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ABSTRACT: N-body simulations are frequently used to understand the evolution of the Solar System. A wide range of 

numerical integrators have been developed for performing such simulations; see, for example,[1, 2].The primary objective of 

this paper is to analyze and compare the error growth and efficiency of different ODE solvers applied to the Kepler’s two-body 

problem. Throughout this paper, the error growth is examined in terms of the global error in the position and velocity, and the 

relative error in terms of total energy and angular momentum of the system. We performed numerical experiments for different 

ODE solvers applied to the Kepler problem for Sun-Mercury System with local error tolerances ranging from  to . 
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1. INTRODUCTION 
Computational astronomers widely use N-body simulations to 

understand the development of the Solar System. The 

developments of the Solar System include the dynamics of 

the planets, small celestial bodies and asteroids. N-body 

simulations are performed by deriving a collection of second 

order ordinary differential equations, and specifying the 

initial positions and initial velocities of the bodies at time  

0tt  . The initial value problem (IVP) for N-body 

simulation is of the form 
 

,          (1.1) 

where  represent the initial positions and 

velocities, the operator  denotes the differentiation with 

respect to , and  is a smooth function, 

where  is the dimension of the IVP. In some cases of 

simulations,  may be changed as bodies are added or 

removed from the simulation. In celestial mechanics, motion 

of two bodies under the influence of gravitational attraction is 

the simplest form of N-body problem. Large numbers of 

numerical integrators [3, 4] and ODE solvers for non stiff 

problems [5, 6, 7] are used to find numerical approximations 

of differential equations at , with  and 

time-step h, which can depend on . 

1.1. Kepler Problem 

The Kepler’s two-body problem [10, 11] is the oldest and 

simplest problem in the dynamics of the Solar System, 

because the exact solution of two-body problem exists. 

Kepler’s two-body problem involves the motion of one body 

about another under the influence of their mutual 

gravitational force. The difference of masses and the large 

distance between the planets allows the orbits of most planets 

and test particles to be approximated by two-body motion. In 

this research we used Sun-Mercury System as the test 

problem. Mercury [12, 13] is a planet in the Solar System that 

is closest to the Sun. The equations of motion of Kepler 

problem can be written as  

,                    (1.2) 

,                    (1.3)   

where  and  are the x- and y-coordinates of one body 

relative to the other, . The initial conditions are 

,     

    . 

The parameter  is the orbital eccentricity and . 

The analytical solution of Kepler problem is available, so the 

Kepler problem is well suited for observing the accuracy of 

ODE solvers over a short interval of time. The analytical 

solution of the Kepler problem is  
 

 
, 

,    

   , 
 

where the eccentric anomaly  satisfies Kepler’s equation 

ζ     [14]. 

1.2. Types of Errors 

Different types of errors have been discussed in this paper. 

The global error is of main importance in the measurement of 

the excellence of the numerical solution. We measure this 

global error in position and velocity and the relative error in 

energy and angular momentum. 

Let  and  are the position vectors of the solutions 

obtained numerically and analytically, respectively, and 

  and  are the velocity vectors of numerical and 

analytical solutions, respectively. The -norm of the global 

error in position and velocity are given by 
 

 
 

 
where,  is the -norm. 

Physical systems usually have conserved quantities, like, the 

total energy  and the angular momentum . Generally, these 

quantities will not be conserved accurately by the numerical 

solution and this digression provides evaluation about the 

accuracy of the numerical solution. The total energy of 

the two-body system is defined as 

.             

The relative error in energy can be defined as 

, 



860  ISSN 1013-5316; CODEN,SINTE 8 Sci.Int.(Lahore),27(2),859-861,2015 

March-April 

where  is the total energy at the initial time . 

The total angular momentum  is defined as 

. 

The relative error in angular momentum is defined as 

 , 

where  is the angular momentum at the initial time . 

The analytical solution is not required to calculate  

and , unlike the global errors in the position and 

velocity. Hence, fewer computing resources are required to 

observe the performance of the ODE solvers here. 

 

2. MATERIAL AND METHODS  

Mathematicians have developed a wide range of numerical 

integration techniques for solving the ordinary differential 

equations (ODEs) that correspond to the continuous state of 

dynamic systems. A general set of fixed-step and variable-

step solvers are provided, each of which implements a 

specific ODE solution method.  

MATLAB is a software that is used to solve an extensive 

variety of problems. The MATLAB ODE suit is a set of 

codes for solving first order systems of ordinary differential 

equations for initial value problems and plotting 

mathematical results of that problem [5].ODE Solvers control 

the estimated local error for initial value problems. A local 

error tolerance is specified and, if the estimated error is too 

large comparative to this tolerance, the step is rejected and a 

new attempt is made with a smaller step size [8].The codes; 

ODE23, ODE45, ODE113 are designed to solve non-stiff 

problems [5].  

2.1. ODE23 

The ODE23 solver is based on an explicit Runge-Kutta (2, 3) 

pair of Bogacki and Shampine [6]. The ODE23 may be more 

efficient than ODE45 at crude tolerances and in the presence 

of mild stiffness. The ODE23 is a  

one step solver, used for non-stiff problems. The code 

ODE23 consist in a four stage pair of embedded explicit 

Runge-Kutta methods of order 2 and 3 with error control. 

2.2. ODE45 

The code ODE45 is a popular (4, 5) pair due to Dormand-

Prince [7]. The ODE45 consist 6 stage pair of embedded 

runge-Kutta method of order 4 and 5. The ODE45 is a one 

step solver for non-stiff problems. In computing , it 

needs only the solution  at the immediately preceding 

time point. In general ODE45 is the best solver to apply as a 

“first try” for most problems. 
2.3. ODE113 

The ODE113 is a variable order and variable step solver 

which uses Adams-Bashforth-Moulton predictor-correctors of 

order 1 to 13 [9]. The ODE113 may be more efficient than 

ODE45 at stringent tolerances and when the ODE function is 

particularly expensive to evaluate. The ODE113 normally 

needs the solution at several preceding time point to compute 

the current solution values [5]. 

 

3. RESULTS AND DISCUSSION 

Here, we observe the global error in the position and velocity, 

and the relative error in energy and angular momentum for 

the Sun-Mercury System. The eccentricity (e) of Mercury is 

0.21 and the time of the orbital motion to complete one 

vibration of Mercury is 28π approximately. The experiments 

are performed using three ODE solvers applied to the Sun-

Mercury System over the period of 28π. The results in Table 

1, Table 2 and Table 3 are for experiments performed with 

ODE23, ODE45 and ODE113, respectively, applied to the 

Kepler problem over the interval [0, 28π]. These experiments 

are performed with a sequence of time steps π/2, π/ , π/  

and π/  over the interval [0, 28π] with the tolerances ranging 

from to . This particular selection of the time step 

is due to the fact that we wish to obtain best accuracy of the 

integrators ODE23, ODE45 and ODE113. First we evaluate 

the position and velocity on each of time step using ODE 

solvers. The values of positions, velocities and times are 

saved in separate files. Then we calculate the errors in 

positions and velocities with respect to the analytical solution 

that we obtain at the stored values of time. Table 1 shows the 

maximum global error in position ( ) using the integrator 

ODE23 with the local error tolerances in the range of to 

. We observe that at a combination of tolerance  

and π/2, the maximum global error 

 

Table 1. Maximum global error in position for ODE23 at different tolerances and time steps 

          
π/2 0.342912 0.0362790  0.003665 0.000367 3.6771E-05 3.6779E-06 3.6782E-07 3.6781E-08 3.6778E-09 

π/4 0.342913 0.0362799 0.003666 0.000368 3.6763E-05 4.5376E-06 1.2275E-06 8.9652E-07 8.6342E-07 

π/8 0.342913 0.0362799 0.003666 0.000368 3.6763E-05 4.5376E-06 1.2275E-06 8.9652E-07 8.6342E-07 

π/16 0.363613 0.0572880 0.024676 0.021378 0.0210476 0.0210145 0.0210112 0.0210109 0.0210109 

 

                                 Table 2. Maximum global error in position for ODE45 at different tolerances and time steps 

                 
π/2 1.52888 0.11872 0.00339 1.73E-05 1.1259E-05 1.6579E-06 1.8758E-07 1.9620E-08 1.9929E-09 

π/4 1.52888 0.11872 0.00339 1.64E-05 1.2119E-05 2.5177E-06 1.0473E-06 8.7936E-07 8.6173E-07 

π/8 1.52888 0.11872 0.00339 1.64E-05 1.2119E-05 2.5177E-06 1.0473E-06 8.7936E-07 8.6173E-07 

π/16 1.51627 0.09775 0.01761 0.020993 0.0210221 0.0210125 0.0210111 0.0210109 0.0210109 
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Table 3. Maximum global error in position for ODE113 at different tolerances and time steps 

          
π/2 0.13984 0.00358 0.00025 3.00E-05 6.8574E-06 2.0444E-06 1.8946E-07 1.0664E-08 5.8392E-09 

π/4 0.13984 0.00358 0.00025 2.91E-05 5.9977E-06 1.1847E-06 6.7028E-07 8.7040E-07 8.5390E-07 

π/8 0.13984 0.00358 0.00025 2.91E-05 5.9977E-06 1.1847E-06 6.7028E-07 8.7040E-07 8.5390E-07 

π/16 0.16075 0.02459 0.02125 0.020981 0.0210040 0.0210088 0.02101072 0.0210109 0.0210109 

in the position is less than the errors obtained by other three 

combinations of different time steps with tolerance . 

Same is the case at other tolerances, the time step π/2 gives 

least error as compared to other three time steps for ODE23 

integrator.   

The same sets of experiments describe in Table 2 are 

performed to obtain the maximum global error in the position 

( ), but now using the integrator ODE45 with the local error 

tolerances ranging from  to . We observe that at a 

combination of tolerance  and  π/2, the maximum 

global error in the position is less than the errors obtained by 

other three combinations of different time steps with 

tolerance . Same is the case at other tolerances, the 

time step π/2 gives least error as compared to other three time 

steps for ODE45 integrator 

Like Table 1 and 2, the same sets of experiments are 

performed to obtain the maximum global error in position ( ) 

using ODE113 integrator with the local error tolerances 

ranging from  to . We observe that the previous 

conclusion holds, i.e., at a combination of tolerance  

and π/2 the maximum global error in the position is less 

than the errors obtained by other three combinations of 

different time steps with tolerance . Same is the case at 

other tolerances, the time step π/2 gives least error as 

compared to other three time steps for ODE113 integrator. 

From Table 1, Table2 and Table 3, we observe a clear 

pattern. When the tolerance is increased, the maximum global 

error in position is also increased. We also observe that 

accuracy of the given ODE solver improves if the time step is 

large at tolerance . We conclude that a combination 

of Tolerance = and time step = π/2 gives better results in 

terms of maximum global error in position for all three 

integrators. Furthermore, we have performed experiments to 

observe the global error in velocity and relative error in energy 

and angular momentum for ODE23, ODE45 and ODE113 

using the combination of tolerance  and step size = 

π/2. We observe that using ODE45 solver the least maximum 

global error in position is approximately , which 

is the best observed accuracy. The ODE45 integrator has 

achieved approximately 84% and 192% better accuracy then 

ODE23 and ODE113, respectively. 
 

Table 4. Least maximum global error in position and velocity 

Solver                              

ODE45 
 

2.574536075  

ODE23 
 

4.761516179  

ODE113  5.839207460  7.617207406  
 

We also computed the global error in velocity. From Table 4, 

we found that least maximum global error in velocity is 

approximately 1 digit larger than the error in the position for 

the integrators ODE23, ODE45 and ODE113. Now consider 

the accuracy of ODE integrators using relative error in the 

energy and angular momentum. 

 
Figure 1. The relative error in energy using ODE23, ODE45 and 

ODE113 integrators against the time period of Mercury 
Figure1: shows the error behavior in total energy using three 

integrators ODE23, ODE45 and ODE113 applied to the 

Kepler problem over 14 periods of time for the planet 

Mercury. The tolerance and time step was selected to give the 

smallest maximum global error. From Figure 1, we observe 

that the best observed accuracy in terms of the relative error in 

energy is again achieved by the ODE45 integrator. 
 

 
Figure 2. The relative error in angular momentum using ODE23, 

ODE45 and ODE113 integrators against the time period of 

Mercury.      
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Figure 2: shows the error behavior in angular momentum 

using three integrators ODE23, ODE45 and ODE113 applied 

to the Kepler problem over 14 periods of time for the planet 

Mercury. The tolerance and time step was selected to give the 

smallest maximum global error. From Figure 2, we observe 

that the best observed accuracy in terms of the relative error 

in angular momentum is again achieved by the ODE45 

integrator. 

Let us now consider the efficiency of the integrators 

discussed in this paper, which is the amount of work to attain 

a given accuracy. One way of measuring the amount of work 

is to count the number of function evaluations. The number 

of function evaluations against the least maximum global 

error in position for the ODE45, ODE23 and ODE113 

integrator with tolerance  and time step π/2 are 

39223, 995641 and 3966, respectively. We observe that 

ODE113 takes the least function evaluations. Whereas, the 

integrator ODE23 is approximately 25.4 times more 

expensive than ODE45. Whereas, ODE45 is approximately 

9.9 times more expensive than ODE113. 

 

4. CONCLUSION   
The main purpose of this paper was to examine the error 

growth and efficiency for different ODE integrators applied 

to the real word problem involving the Sun and the planet 

Mercury. The simulations were performed over one period of 

Mercury. For these simulations, we performed experiments to 

observe the error growth in position and velocity using three 

integrators ODE23, ODE45 and ODE113 for the local error 

tolerances ranging from  to  and with variation in 

time steps. For the given range of tolerances from to 

, and time steps from π/16 to π/2, we observed that the 

integrator ODE45 achieves the best observed accuracy. The 

integrator ODE23 attained the 2
nd

 best accuracy whereas the 

ODE113 was the least accurate at the same combination. 

We then analyzed the efficiency of the integrators by 

counting the number of function evaluations against the least 

maximum global error in position. We observed that the best 

accuracy attained integrator ODE45 uses approximately 9.9 

times more function evaluations than ODE113 and 

approximately 25.4 times less function evaluations than 

ode23.  
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